Air circuit breakers DMX 6300 5000 and 6300 A

Dimensions see e-catalogue
Electrical characteristics see e-catalogue
Automatic air circuit breakers must be equipped with electronic protection unit, imperatively ordered together for factory assembly Please ask for DMX ${ }^{3}$ order form

Electronic protection units for $\mathrm{DMX}^{3} \mathbf{2 5 0 0}$, 4000 and 6300

Settings and curves see e-catalogue
$D M X^{3}$ circuit breakers must be equipped with electronic protection units (to be ordered together for factory assembly) enabling very precise adjustments of the protection conditions, while maintaining total discrimination with downstream devices
All protection units are equipped with batteries for powering in case of mains fault or when the breaker is open or not connected

17 legrand

DMX ${ }^{3}$

electronic protection units

Settings of the electronic protection units

MP4 LI
Ir, li, tr adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps) on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

tr - at $6 \times \operatorname{lr}(4+4$ steps $)$
$\operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5 s (MEM OFF)

- Instantaneous protection against very high short circuits
li from 2 to $15 \times$ In or Icw (9 steps) li $=2-3-4-5-6-8-10-12-15 \times$ In or Icw
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP4 LSI

Ir, tr, Isd, tsd, li adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \operatorname{In}(6+6$ steps) on two selectors $(0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time
tr - at $6 \times \operatorname{lr}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON) 30-20-10-5 s (MEM OFF)
- Short time delay protection against short circuits

Isd from 1.5 to $10 \times \operatorname{lr}(9$ steps) Isd $=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tsd from 0 to $0.3 \mathrm{~s}(4+4$ steps) $\mathrm{tsd}=0-0.1-0.2-0.3 \mathrm{~s}$ ($t=\operatorname{cost}$),
$0.3-0.2-0.1-0.01 \mathrm{~s}$ ($\left.1^{2} t=c o s t\right)$
- Instantaneous protection against very high short circuits
li from 2 to $15 x$ In or Icw (9 steps) li=off-2-3-4-6-8-10-12-15 x In or Icw
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

MP4 LSIg

Ir, tr, li, Ig, tg, Isd, tsd, adjustment on front panel

- Long time delay protection against overloads

Ir from 0.4 to $1 \times \ln (6+6$ steps $)$ on two selectors
($0.4 \div 0.9$, by steps of 0.1 and $0.0 \div 0.1$, by steps of 0.02)

- Long delay protection operation time

$\operatorname{tr}-$ at $6 \times \operatorname{lr}(4+4$ steps $) \operatorname{tr}=5-10-20-30 \mathrm{~s}$ (MEM ON)
30-20-10-5 s (MEM OFF)

- Short time delay protection against short circuits

Isd from 1.5 to $10 \times \operatorname{lr}(9$ steps) Isd $=1.5-2-2.5-3-4-5-6-8-10 \times \mathrm{Ir}$

- Short time delay protection operation time
tsd from 0 to $0.3 \mathrm{~s}(4+4$ steps) tsd $=0-0.1-0.2-0.3 \mathrm{~s}$ ($\mathrm{t}=$ constant), 0.3-0.2-0.t01 s (I2t=constant)
- Instantaneous protection against very high short circuits
li from 2 to $15 \times \ln$ or Icw (9 steps) li $=2-3-4-6-8-10-12-15 \times \ln$ or Icw
- Earth fault current
\lg from 0.2 to $1 \times \ln$ (9 steps) $\lg =0.2-0.3-0.5-0.6-0.7-0.8-1 \times \ln : O F F$ tg from $0.1+1 \mathrm{~s}(4$ steps) $\operatorname{tg}=0.1-0.2-0.5-1 \mathrm{~s}($ both $\mathrm{t}=\mathrm{k}$ and $\mathrm{I} 2 \mathrm{t}=\mathrm{k})$
- Neutral protection: IN = I-II-III-IV x Ir (0-50-100-100 \%)

Selectivity in three-phase network 400 V
DMX³/DPX

		DMX ${ }^{3} 2500$					DMX^{3}	DMX^{3}
		800 A	1000 A	1250 A	1600 A	$\begin{array}{r} 2000 \& \\ 2500 \text { A } \end{array}$	$\begin{aligned} & 3200 ~ \& ~ \\ & 4000 \text { A } \end{aligned}$	$5000 \text { \& }$
DPX ${ }^{3} 160{ }^{(1)}$		T	T	T	T	T	T	T
DPX ${ }^{3} 250{ }^{(1)}$		T	T	T	T	T	T	T
DPX ${ }^{\text {6 }}$ 30 ${ }^{(1)}$ T	nd elec.	T	T	T	T	T	T	T
DPX ${ }^{3} 1600$ thermal magnetic	630 A	T	T	T	T	T	T	T
	800 A		T	T	T	T	T	T
	1000 A			T	T	T	T	T
	1250 A				T	T	T	T
DPX ${ }^{3} 1600$ electronic	630 A			T	T	T	T	T
	800 A			T	T	T	T	T
	1000 A				T	T	T	T
	1250 A				T	T	T	T
	1600 A					T	T	T

1: All breaking capacity
T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

DMX ${ }^{3} /$ DMX 3

\square		DMX ${ }^{3}$									
		800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DMX ${ }^{3}$	800 A		T	T	T	T	T	T	T	T	T
	1000 A			T	T	T	T	T	T	T	T
	1250 A				T	T	T	T	T	T	T
	1600 A					T	T	T	T	T	T
	2000 A						T	T	T	T	T
	2500 A							T	T	T	T
	3200 A								T	T	T
	4000 A									T	T
	5000 A										T
	6300 A										

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2 :ur downstream ireut breaker \leq lcu of upstream circuit breaker

DMX ${ }^{3} / \mathrm{DX}^{3}$

	DMX ${ }^{3} 2500$							DMX ${ }^{3} 4000$		DMX ${ }^{3} 6300$	
	630 A	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	6300 A
DX ${ }^{3}$ 6000-10 kA	T	T	T	T	T	T	T	T	T	T	T
DX ${ }^{10000}-16 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 5 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 6 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T	T
DX ${ }^{3} 0 \mathrm{kA}$	T	T	T	T	T	T	T	T	T	T	T

T: total selectivity, up to downstream circuit breaker breaking capacity according to IEC 60947-2

For the settings of MP6 protection units,
Please, consult us

Protection unit MP4 - DMX3
 Item 28800 - Item 28801
 Item 28802 - Item 28808

Contents

1. Identification and factory setting 40
2. Insertion /substitution battery 41
3. Setting levels protection 41
4. Signaling of protection unit state 44
5. Test button 45
6. Visualisation and use of menus 46
7. Default page 47
8. Setting of currents visualisation 50
9. Visualisation rules for temperature 50
10. Visualisation rules for battery charge 50
11. Menu pages. 51
12. Accessories 52
13. Menu navigation 53
14. Menu strucłure 65
15. Technical annexes 67
15.1. Curves 67
15.2. Tripping time 72

Protection unit DMX3

28800 Factory setting
li=lcw;
$\mathrm{Ir}=(0.9+0.1) \times \mathrm{ln}$; $\mathrm{tr}=30 \mathrm{~s}$ (MEM=OFF); lsd=101r=fix Tsd=1s=fix
N=50\%

28801

Factory setting
li=lcw;
lsd=10 x lr; tsd=1s (t=const); $\mathrm{Ir}=(0.9+0.1) \times \mathrm{ln}$; $\mathrm{tr}=30 \mathrm{~s}$ (MEM=OFF); N=50\%

28808 Factory setting $\mathrm{lg}=\mathrm{OFF}, \mathrm{tg}=0.1$, li=lcw; $\mathrm{Isd}=10 \times \mathrm{ln}$; tsd=1s (t=const); $\mathrm{N}=50 \%$

28802
Factory setting
$\mathrm{lg}=\mathrm{OFF}, \mathrm{tg}=0.1$,
li=lcw; $\mathrm{lsd}=10 \times \mathrm{lr}$; $\mathrm{tsd}=1 \mathrm{~s}(\mathrm{t}=$ const); $\mathrm{Ir}=(0.9+0.1) \times \ln$; $\mathrm{tr}=30 \mathrm{~s}$ (MEM=OFF); N=50\%
"MEM OFF" =
thermal memory off

1. Identification and factory setting

Protection unit DMX ${ }^{3}$

2. Insertion/substitution battery

Remove frontal cover of the breaker. like shown on picture. Batteries are delivered Insert the 4 batteries on the lower part of the outside the breaker. protection unit keeping polarity and mounting order

3. Setting levels protection

Setting of levels protection is possibile with rotary switches. Execute setting with a plate screwdriver.

Protection unit DMX ${ }^{3}$

Ground fault protection (only for item 28802 and 288 08)

Setting of current
(9 steps) $\lg =0.2-$ 0.3-0.4-0.5-0.6-0.7-0.8-1 xIn - OFF

Setting of time delay (@12xlg) ($4+4$ steps) $\operatorname{tg}=0.1-0.2-0.5-1 \mathrm{~s}$ ($\mathrm{t}=$ const) $\operatorname{tg}=1-0.5-0.2-0.1 \mathrm{~s}$ (${ }^{12}$ t $=$ const)

Overload protection (Long
Time Setting) (not for item 288 08)
Setting of current (@12xlg 2x6 steps) $\mathrm{Ir}=0,4 \div 1 \times \mathrm{ln}$ With 2 switches $10,4 \div 0,9$, steps of 0,1 $0,0 \div 0,1$, steps of 0,02)

Example:
Ir $=0.4+0.06$
$=0.46 \mathrm{ln}$
Setting of time delay (@6Ir)
(4+4 steps)
$\mathrm{tr}=5-10-20-30 \mathrm{~s}$
(MEM ON)
$\mathrm{tr}=30-20-10-5 \mathrm{~s}$
(MEM OFF)
"MEM OFF" =
thermal memory off
"MEM ON" =
thermal memory on

Short circuit

protection
Setting of current (9 steps)
Isd=1.5-2-2.5
3-4-5-6-8-10x|r
(For item 28808
lsd=1.5-2-2.5
3-4-5-6-8-10x|n)

If li<lsd, then istantaneous setting prevails against the magnetic one.

* Last intervention threshold not adjustable $=$ If $=$ Icw

Protection unit DMX3

Setting of time delay ($5+4$ steps) Tsd=0-0.1-0.2-$0.5-1 \mathrm{~s}$ ($\mathrm{t}=$ const) Tsd=1-0.5-0.2$0.1 \mathrm{~s}\left(1^{2} \mathrm{t}=\right.$ const $)$

Instantaneous short circuit protection
Setting of current (9 steps) $\mathrm{li}=2-3-4-6-8$ 10-12-15x In-lcw

Neutral

 protectionSetting of current (3 steps) N=OFF-50\%-100\%

Protection

 against over temperature (not adjustable) $t>95^{\circ} \mathrm{C}$[^0]

Protection unit DMX ${ }^{3}$

LED 1 and LED 2

The state of the protection unit is signaled through LED 1 and 2, according to the next table:

Protection		Led 1		Led 2
Inactive		Switched off		Switched off
Active ($\geq 100 \mathrm{~A}$ or supplied)		Green	Fix	Switched off
Active: (overload pre alarm ($1>0,91 r$)	Green	Fix	Red	Fix
Active: (overload alarm $1>1,051 r$)	Green	Fix	Red	Flashing
Active: over temperature alarm ($T>75^{\circ} \mathrm{C}$)	Green	Flashing	Red	Flashing

Signaling:

An alarm is more important than a prealarm. The overload is more important than over temperature
LED 3:
Failure by earth fault (only for item 28802 and 28808)

LED 4:
Failure by short circuit/instantaneous short circuit

LED 5:
Failure by overload/ overtemperature (not for item 288 08)

4. Signaling of protection unit state

Protection unit DMX ${ }^{3}$

5. Test button

On the right side of the protection unit, below the navigation buttons, there's the TEST button.
This command allows to verify the correct functioning of breaker and protection unit. Pushing the TEST button for a time higher than 2 seconds makes the breaker trip and allows to verify correct working of the protection device.

The tripping sequence is:

1. Push for at least 2 seconds the " T " button
2. All LEDs light on for 1 second (ON LED on orange the others on red)
3. The breaker trips and each LEDs switch off. The ON LED move from orange to green.

Protection unit DMX ${ }^{3}$

6. Visualisation and use of menus

It's possible to explore the menu using the OK,
$\boldsymbol{\Delta}, \boldsymbol{\nabla}$, buttons.
It's possible to visualize 2 type of pages:

- Default pages: Show the state of the breaker in all the allowed uses (closed-normal, closed-alarm, tripped, open). It's shown every time that protection unit is turn on and it's automatically refreshed if, after a determinated time (fixed $\mathrm{Tl}=10$ seconds), there's no activity on the 4 navigation buttons. From this page it's possible to reach the Menu Page only by pushing OK button.
- Menu pages: these are the pages active when using the menu.

The exit from submenus pages that allow a parameter setting (Example: setting of brightness) is possible in three ways:

(1) Push OK button:

back to upper level with storage of the new parameter.

(2) Push C button:

back to upper level without storage of the new parameter.

(3) After time T1

back to main page without storage of the new parameter.

Protection unit DMX ${ }^{3}$

7. Default page

Like shown on the bottom, display have an "Upper part", of two lines, and a "Lower part", of four lines.

Four type depending on breaker status.
1.BREAKER CLOSED - NORMAL: (no pre alarm or alarm signal). On upper side are shown maximum average currents.

Example: maximum value 1000A on 1 phase, average value 700A.

From this position (closed breaker and no alarms) it's possible to enter the main page by pushing $\mathbf{O K}$ button. MAX represents the maximum value among the currents (phase shown on side, $11,12,13$ or N ; this last one only if Neutral is present); AVG instead shows the average value obtained by:
$A V G=\frac{\sum l_{i}}{n}$

Where " n " is the number of phase detected by the breaker, so:
4 if Neutral is present (four poles or three poles with external neutral)
3 if Neutral is absent (3 poles without external neutral)
Phases 11, 12, and I3 are always considered in the sum; Neutral only if is present.

Protection unit DMX ${ }^{3}$

2. BREAKER CLOSED - ALARM: (protection unit in alarm position) Upper side of the display become like shown:

A	L	A	R	M										$\boldsymbol{\Delta}$	\boldsymbol{V}
	l	d	e	s	c	r	i	p	t	i	o	n	J		

From this position (closed breaker and protection unit in alarm position) it's possible to enter the main page pushing one time the $\mathbf{O K}$ button.

Description: possible cases (11 and I3 are an example of indications).

	I	$>$	0	.	9	\square		I	r				I	1	
	I	$>$	1	.	\square	5		I	r				I	3	
	T	$>$	7	5	\circ	C									

Indication on alarm type is shown on the second line; if there are several alarms, these can be visualized scrolling with $\boldsymbol{\nabla}$. If more than one phase is on alarm position (Example: II and I3> 1.05 Ir) two different descriptions are shown on different lines.
3. BREAKER TRIPPED: Upper side of the display is like shown:

F	A	U	L	T										$\boldsymbol{\Delta}$	$\boldsymbol{\nabla}$
	c	d	e	s	c	r	i	p	t	i	o	n	J		

Indication on failure type is shown in the second line; if there are several events at the same time, these can be visualized scrolling with $\mathbf{\Delta}$. If more than one phase is on failure position (Example: Thermal II and Thermal I3) two different descriptions are shown on different lines. From this page is possible to reach the main page pushing one time the $\mathbf{O K}$ button.

Description: possible cases 117,12 and 13 are an example of indications).

T		h	e	r	m	ก	a	1								I		1
N		a	9	n	e	e	t	i	C							I		2
1		5	t	a	r		t	a	r		e	\bigcirc	U		5	I		3
-		\checkmark	e	r			t	e	m		P	.						
3		\bigcirc		E	1		e	m	e		n	t						
7		e	5	t														

Protection unit DMX ${ }^{3}$

4. BREAKER OPEN: Upper side of the display is like shown:

From this page is possible to reach the main page pushing one time the OK button.
In the lower side and for all the 4 types of main or default page, are shown the currents of each phase, if present, the earth fault/leakage current, temperature detected by the protection unit and the residual charge on the auxiliary batteries. If information to show are more than 4 two pages will be automatically shown alternatively every 5 seconds. It's also possible to manual switch pushing everyone of the buttons $\boldsymbol{\triangle}, \boldsymbol{\nabla}$ and \mathbf{C}. (Example: four poles breaker with earth fault protection \rightarrow phase currents +lg).

Page 1:

Page 2:

Protection unit DMX ${ }^{3}$

8. Setting of currents visualisation

1. Each current can be shown in 3 way: an histogram, a value and a percentage; all calculated with the same accuracy rule:
VALUE has no more than 6 spaces. If VALUE ≤ 9999 is shown on 4 digits plus the symbol "A", using so 5 spaces. If instead 9999 < VALUE < 99999 digits are only 3 with a decimal digit divided by a dot and followed by " k " and " A " symbols (so 6 spaces) and are obtained reducing VALUE to the nearest lower decimal (Example: 12550 A become 12500 and is shown as 12.5 kA). If is VALUE ≥ 99999 digits are still 3 , but are hundred, decine and unit, obtained once more reducing to the nearest lower unit and followed by the symbols " k " and "A" (so 5 spaces). (Example: 245650 A become 246000 and is shown like 246kA).
If PERCENTAGE $>999 \%$ is shown the symbol $\ggg \%$.
2. Histograms of currents can shown values among 0 and $1,2^{*}$ | threshold [A], where I threshold is the threshold current for thermal protection (II); if detected current is higher than maximum value, the histogram is shown complete (so equivalent to a threshold of 120%).

9. Visualisation rules for temperature

3. Temperature is shown in 3 way: an histogram, a value and a percentage; all calculated with the same accuracy rule. VALUE has no more than 5 spaces, 3 digits (only integer values) and the symbol " ${ }^{\circ} \mathrm{C}$ ". If PERCENTAGE > 999\% is shown the symbol >>>\%.
4. Temperature histogram shows values among 0 and $95\left[{ }^{\circ} \mathrm{C}\right]$; if detected temperature is higher than maximum value histogram is shown complete (so equivalent to $95^{\circ} \mathrm{C}$).

10. Visualisation rules for battery charge

5. Residual charge on battery is shown in 3 way: an histogram, a value and a percentage; all calculated with the same accuracy rule. VALUE has no more than 5 spaces, 3 digits (decine, unit and 1 decimal digit separated by a dot) and the symbol " V ".
6. Histogram of residual charge on battery shows values among 0 and $12[\mathrm{~V}]$; if detected battery is higher than maximum value histogram is shown complete (so equivalent to 12 V). Additionally, for absolute values of voltage \leq Val. Min. Batt. (settable parameter, see Main page - System options), is shown an empty histogram and the message "Change battery" instead of the percentage value.

Protection unit DMX ${ }^{3}$

11. Menu pages

VISUALISATION:

Display has 3 levels, the central one is for exploring, the two others to show information:

- Level 1: INFORMATION - Menu name active.

Level 2: DESCRIPTION (two lines) - possible pages on active menu; sequential number (N/M) is referred to the selected page (name on black background and white letters) and it's also present on the upper left part of the level 1. Using $\mathbf{\Delta}$ and $\mathbf{\nabla}$ buttons is possible to select other pages of the same level updating sequential number and information on level 3 (see below). Pushing OK is possible to activate the menu responding to the selected page; DESCRIPTION move to level 1 and are shown the pages available for the new menu, and a description of selected page (default first page); \mathbf{C} button move up to previous level. Level 3: INFORMATION - description of content inside selected page.

Scrolling down to the last level available on the menu and pushing the "OK" button, it's possible to see on the screen the same structure explanied previously unless that the level $\mathbf{3}$ is no more shown.

SETTING:

If page allow to set a parameter (Example: setting of contrast/brightness, setting of Modbus addresses, etc.) is possible to change the value using $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ buttons. New setting will be operative only if confirmed pushing the $\mathbf{O K}$ button.

Protection unit DMX ${ }^{3}$

12. Accessories

288 10-28811 (factory assembled)
External current trasformer for earth fault and neutral protection (not disconnected).
It's possible to use it with 3 poles breakers and is installed on the neutral in the following cases:

- neutral protection (not disconnected; with version 28800 ou 28801 and 288 03)
- earth fault protection (with version 28802 and 288 04)

The device 28810 can works with nominal currents up to 4000A (is not available on DMX ${ }^{3}$ automatic breakers «Frame I with Icu=42kA»|, while the device 28811 can works only on automatic breakers DMX^{3} Frame III up to 6300A.

28806

External power supply module.

The accesory allows an uninterrupted supply of electronic protection unit, even if the circuit breaker is switched off/tripped.
The accessory allows to power one protection unit MP6 or 4 protection unit MP4

28812

Module adjustable contacts

This module is an accessory used to manage other external devices for signal/control.
Must be related to the protection unit, which allow its adjustment, and must be connected to the terminals on the upper part of the breaker.

28805 (factory assembled)

Communication option

Factory assembled this option allows to connect the breaker to a MODBUS RS485. supervision system.

Protection unit DMX ${ }^{3}$

13. Menu navigation

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push C - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push C - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

Protection unit DMX ${ }^{3}$

* MINIMUM VALUE SHOWN ON DISPLAY

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX ${ }^{3}$

To come back to the upper level of menu push \mathbf{C} - To scroll up push " \triangle "

Protection unit DMX3

	Level 1 Menu	Level 2 Menu	Level 3 Menu	Level 4 Menu
	Protection	Long Time	Level	
			Time	
			Options	Thermal memory (ON/OFF)
		Short Time	Level	
			Time	
			Options	Curve
		Instantaneous	Level	
		Neutral	Protection	
		Ground	Level	
			Time	
			Options	Curve
		Overtemperature	Alarm	$75^{\circ} \mathrm{C}$
			Trip value	$95^{\circ} \mathrm{C}$
	State	State	e.g. closed	
		Alarms		
		Measures	current	11
				12
				13
				N
				\lg
			Temperature	
			Battery	
	Modules	Com. Setup	Address	1,2.
			Speed	
			Mode RTU-ASCII	RTU
				ASCII
			Parity	No
				Even
				Odd
		Relays *	local relay	Commands (test; reset)
				Programming
* Local relay: terminal block W on breaker Relay 1. .Relay6: external programmable module 28812 (optional accessory)				Commands (test; reset)
			relay 1	Programming
			\ldots	
			relay 6	Commands (test; reset)
				Programming

Protection unit DMX ${ }^{3}$

	Level 1 Menu	Level 2 Menu	Level 3 Menu	Level 4 Menu
	System Parameter	circuit breaker	I CW	
			rated current	
			n° of poles	
			Neutral	phase sequence
				position (ext/int/absent)
			external toroids	(present/absent)
		COM	(Active/NoActive)	
		date/time		
		Language		
		Contrast		
		Brightness		
			val min L	
		Options	Val Min G	
			Val Min Batt	
	Archives	Faults	history of last 20 trips	
		Counters	Long Time	
			Short Time	
			Instantaneous	
			Fix Instantaneous	
			Ground	
			Overtemperature	
			Test	
	Information	FW version *	Protection	S/W version
				BL version ***
			Display	S/W version
				BL version
			Languages	version S/W
				Lang. pack
		HW version **	H/W version	
			H/W version	
* FW: software		Serial Number	Protection Unit	
** HW: hardware *** BL: boot loader			Circuit Breaker	

Protection unit DMX3

15. Technical annexes

15.1 Curves

Timecurrent tripping characteristic item 28800

Ir = Long time setting current $\mathrm{Tr}=$ Long time delay
Isd = Short time setting current
$\mathrm{li}=$ Istantaneous intervention setting current

If short-circuit current is higher than Icw value or li is setted at Icw position, tripping time is equal to 30 ms

Protection unit DMX ${ }^{3}$

Time-current
tripping characteristic item 28801
and 28802
Ir = Long time setting current $\mathrm{Tr}=$ Long time delay
Isd = Short time setting current
Tsd = Short time delay
li = Istantaneous intervention setting current

If short-circuit current is higher than Icw value or li is setted at Icw position, tripping time is equal to 30 ms

Protection unit DMX3

Time-current tripping characteristic item 28808

Isd = Short time setting current Tsd = Short time delay
$\mathrm{li}=$ Istantaneous intervention
setting current

Icc = estimated short circuit symmetrical current (RMS value)
$\mathrm{I}^{2} \mathrm{t}=$ pass-through specific energy

Protection unit DMX3

Ground fault
tripping characteristic

Protection unit DMX3

Pass-through specific energy characteristic

Icc = estimated short circuit symmetrical current (RMS value)
$I^{2} \dagger=$ pass-through specific energy

Protection unit DMX ${ }^{3}$

15.2 Tripping time

Time delay	No tripping time	Tripping time
Tsd	(ms)	(ms)
0	30	70
100	70	120
200	150	205
500	450	515
1000	930	1000

	No tripping time	Tripping time
$\mathbf{l i}$	$(\mathbf{m s})$	(ms)

	Tripping time
Icw	(ms)
	30

[^0]: * Last intervention threshold not adjustable $=$ If $=$ Icw

